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On the trapping of long-period waves round islands 

By M. S. LONGUET-HIGGINS 
Oregon State University, Corvallis 

(Received 9 November 1968) 

The trapping of short-period gravity waves by islands and seamounts has been 
studied by Chambers (1965) and by Longuet-Higgins (1967). It was shown by the 
latter that in the absence of rotation, or when the wave frequency cr is large 
compared with the Coriolis parameter f, these waves cannot be perfectly trapped; 
some energy must always leak away to infinity. Very long-period oscillations 
in the presence of a sloping shelf surrounding an island, with (T -g f, have been 
studied by Mysak (1967) andRhines(1967,1969). Hereperfect trappingispossible. 
However, as pointed out in Longuet-Higgins (1968), the rotation itself exerts 
a strong trapping effect not only when I u I < f ,  but also whenever I crl < f .  It seems 
not to have been noticed that this effect is capable of trapping waves round an 
island in an ocean of uniform depth, in the absence of any shelf or sloping region 
offshore. 

The existence of such waves is demonstrated for a circular island in 5 1 of the 
present paper. It is shown that the waves exist only when the azimuthal wave- 
number n is at  least 1. The waves always progress round the island in a clockwise 
sense in the northern hemisphere. At large distances r from the island, the wave 
amplitude decays exponentially, but this exponential trapping occurs only if the 
radius u of the island exceeds the critical value (n(n- 1) gh):/f. When n = 1, this 
critical radius is zero, so that in theory the waves exist for any island of non-zero 
radius. 

The application of these results to the ocean is discussed in 3 2. Except possibly 
for baroclinic motions, it appears that only the waves corresponding to n = 1 
could exist in fact, and that their frequency would be nearly equal to the inertial 
frequency f. It is unlikely that f could be regarded as constant over a sufficiently 
wide area for the model to apply without qualification. Nevertheless, the oscilla- 
tions may be regarded as the local adjustment of the pressure field to inertial 
currents in the neighbourhood of the island. It is possible that the peak a t  about 
0.73 c.p.d. in the spectrum of sea-level at Oahu, as found by Miyata & Groves 
(1968), can be interpreted in this way. 

1. Free waves round a circular island 

a rotating ocean of uniform depth h is 
The differential equation satisfied by the surface elevation 5 for long waves in 
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where V2 denotes the two-dimensional Laplacian in the horizontal plane, r is 
the radian frequency (with 5 K eriut), and f and g denote the Coriolis parameter 
and the acceleration of gravity respectively (see, for example, Lamb 1932). Let 
us take polar co-ordinates ( r ,  0) in the horizontal plane. Then, as pointed out by 
Chambers (1965), there exist solutions to (1.1) in the form 

5 = [A  J,(kr) + BY,(kr)] ei(ne-ut); (1.2) 

where 

and J, and Y, denote Bessel functions of the first and second kinds. When cr2 2 f 2, 

k is real. Chambers suggested that these expressions represent trapped waves; 
but, since J, and Y, diminish like r-3 at infinity, the total energy outside a given 
radius r is finite. and so the waves are not really trapped. (Virtual trapping 
may be achieved by means of a shallow circular sill; see Longuet-Higgins 1967.) 

On the other hand, when g2 < f 2, we may write 

so that the appropriate solutions are now 

5 = [CI,(lcr) + L)R,(xr)] ei(ne-a ), (1.5) 

where I ,  and K ,  represent the modified Bessel functions (see, for example, Olver 
1964). Since for large x 

(1.6) 

(1 .7 )  

it follows that, if the energy outside a given circle is to be finite, we must have 
C = 0, and then, with D = 1, 

may represent a truly trapped motion, provided that the appropriate boundary 
conditions for finite r can be satisfied. As pointed out by Longuet-Higgins (1968), 
the trapping effect is the result of rotation, not of refraction. Since, near z = 0, 

I In(z) ,w ( k ) ' e z ,  largzl < QV, 

n - 4  
Kn(z) N (G) e-2, largzl < 

5 = K,(Kr) ei(nO-ut), 

the origin r = 0 must be excluded. 

component of velocity vanishes. This leads to the condition, when 0-2 $: f 2, 

Suppose we assume that, at  the boundary r = a of the island, the radial 



or, from (1.7)) 
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Using the recurrence relation 

we may write (1.10) in the form 
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(1.10) 

(1.11) 

(1.12) 

Has the above equation any solutions? When n = 0 the right-hand side 
vanishes. Since K ,  has no positive zeros, it follows that no solutions symmetrical 
about the origin exist. This follows also from the theorem that the total circula- 
tion about the boundary of the island is invariant in time; hence, if it  is sinusoidal, 
it must vanish. We are thus left with the case n 1 ,  

Now, from (1.4)) we have 
b l 2  

( K U ) 2 = €  ( 1--- f":) , - ;: - - 1--- 
E )  

where e denotes the non-dimensional parameter 

ay2 
6E- 

gh ' 
which is always positive. Thus (1.12) may be written in the form 

where 

(1.13) 

(1.14) 

(1.16) 

The variables F, and G are plotted in figure 1 as functions of f = $(Ka)2, for 
n = 1, 2, 3, 4 and e = 0, 2, 6, 12 (the reasons for this choice of values for B will 
soon be apparent; see (1.22)). The curves all pass through the point f = 0,  
F, = G, = 1. But it can be seen that whereas Pl intersects all the G curves 
(including the curve for e = 0)) F2, F3 and F4 intersect only some. It can be shown 
that the curves for F, are always concave downwards,-f whereas the curves for 
G are concave upwards; that is to say 

d2Fn d2G - < o ,  - > o .  
d f 2  df2  

(1 .17)  

Moreover, as f -+ is, so G -+ co, whereas F, remains finite. Therefore, apart from 
f = 0, any F, intersects G at one other point, or none, depending on whether 

dFn/df 2 dG/dt at f = 0. 

t See appendix B. 
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6 = g(Ka) '  

FIGURE 1. Graphs of the functions 1",(& and G(5)  defined by (1.16). 
Their intersections give the frequencies of the trapped modcs. 
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FIGURE 2. Graph of the non-dimensional frequency g/f, as a function of af/(gh)*. The 
broken lines indicate the asymptotic expressions - a/f = n/Je, corresponding to Kelvin 
waves. 
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Now, from the expansions for K,(z) when z < 1 (see Olver 1964), we have 

i 
I 

Zn-l(n - 1)  ! + 

Hence 

6 t2 t Y t 2  F2 = l+-+-ln - +-+O(t3lnt), 

l?! = 1+-- 

2 2 ( 2 )  4 

+O(C31nf) (n> 3). t f2  
n(n - 1)  2n(n - 1)2 (n - 2) 

d t  d( n(n- 1) 
1 -+- (a 2 1). - dFn 

dFl -+ a, __ So, as 6 + 0, 

On the other hand, when l +  0, we have 

dG 1 6 3f2 G = 1+-+G2+~( f ;3 ) ,  E 
- df ’i’ 

(1.18) 

(1.19) 

(1.20) 

(1.21) 

It follows that when n = 1 equation (1.15) has always just one positive root), 
but that when n = 2, 3, 4, . . . there is one positive root if 

E > n(n- 1); 
otherwise there is nolie. 

The condition (1.22) can also be written 

(1.22) 

which shows that for given values off, g, h and n there is a minimum radius a for 
the existence of trapped modes. If the radius is less than this critica.1 value, the 
waves cannot ‘round the corner ’. 

The lowest mode (n = 1) may be included in the above statement if we allow 
the critical radius to be zero. 

For large values of n the transverse wave-number at  the edge of the island is 
approximately n/a = rn, say, and in that case the condition (1.23) may be written 

f2 (1.24) 
in the form 

To obtain the frequency (T of the basic modes, for any given value of E and n, 
we may use figure 1 to find the corresponding value of G, = - fir, and then take 
the inverse. In  this way we have derived figure 2. 

When (.a) is large compared t o  n, the asymptotic formulae (1.G) will apply, 

~ > (l-;). 
m2gh 

and we shall have 
K a  

n F,, N - . (1.26) 
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Since also G must be large, it follows that 

and so - 

K a  - Je; (1.26) 

Hence, writing m = n/a for the wave-number at  the boundary, we have 

U 
- - - (gh)j. 
m 

(1.27) 

(1.28) 

In  other words, the velocity of propagation of the waves is equal to (gh)+. The 
surface elevation (1.7) is given approximately by 

a)  + i(ms - 

where s = ad, the distance along the perimeter. Since K - f/(gh)a, this shows 
that the waves are then approximately Kelvin waves, propagated clockwise 
round the island (in the northern hemisphere). The asymptotic expressions 
-0-/f = n /Je ,  corresponding to Kelvin waves, are shown in figure 2 by broken 
lines. 

f .  From figure 2 it can 
be seen that, even when E > 0, there exists a root of (1.15) given by 

K a =  0, ( T = - f .  (1.30) 

Does this correspond to a possible trapped motion? 
In appendix A it is shown that in this case there can be a trapped wave only 

(1.31) when 

i.e. in the special circumstances when the radius a of the island equals the critical 
radius. In all other cases no trapped wave exists. In  this sense figure 2 is a com- 
plete diagram. We conclude that the difference between the wave frequency and 
the inertial frequency is an essential feature in the trapping of the wave motion, 
except in the special case (1.31).t 

It remains to investigate the special case when 0- = 

e = n(n- l), (n2 2 ) )  

2. Applications to the ocean 

corresponding to the island of Oahu (latitude 21" 30") we may take 
For most oceanographic applications e is a small quantity. For instance, 

(2.1) } 
a = 100km, 

g = km/s2, h = 3 km, 
f = 5 x lOWrad/s, 

giving E = 0.83 x 10-3. For this reason it appears that when n 2 2 the condition 
e > n(n - 1) cannot be satisfied by the barotropic motions. Hence only the lowest 
mode (n = 1) can exist. 

It is clear from figure 1 that if e is small, then for the mode n = 1 the quantity 
f ;  = & ( K a ) 2  is small also. Moreover, since G is close to unity, ( [ /e )  must be a small 

t This conclusion may have to be modified when non-linear effects are taken into 
account. 
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quantity. Equating the expansions for Fl and G in (1.19) and (1.21) we obtain 
in fact 

so (.a) = (204 = 2e--1/*€. (2.3) 

This being extremely small, it follows that the region of exponential trapping, 
which is where K r  B 1, would be at  unrealistically large values of (r/a)-so large 
that f could not in practice be assumed to be uniform over the whole region. 

Nevertheless, the solution (1.7) corresponding to n = 1 ,  namely 

[ = K1(Kr) eW-rt), (2.4) 

still represents a solution which is valid locally near the island. From (1.18) 
we see that the first terms in its asymptotic expansion are given by 

and from (1.13) 

Thus the frequency is approximately equal to the inertial frequency, and the 
motion progresses clockwise round the island, in the northern hemisphere. The 
radial and tangential components of velocity are given by 

When r = a, the radial velocity u, vanishes, by equation (2.2). Both terms in 
the expression for u, diminish at first, the term in a2/r2 rapidly and the term in 
In (u) more gradually. Hence there is a limited concentration of energy in the 
neighbourhood of the island itself. 

The record of sea-level at  Mokuoloe and Honolulu, on the island of Oahu, 
shows significant peaks in the coherence spectrum at frequencies of 0.73, 0.50, 
0.33 and 0.23c.p.d. (Miyata & Groves 1968). The inertial frequency at  that 
latitude (21" 30") is 0.73 c.p.d. Hence it seems reasonable to identify this peak 
as the local aspect of inertial oscillations in the neighbourhood of the island. The 
phase difference of 120" between Mokuoloe and Honolulu is also consistent with 
this interpretation. A further discussion of the spectrum of sea-level at Oahu 
is given in another paper (in preparation). 

Consider, on the other hand, baroclinic motions. These are subject to an 
exactly similar analysis, except that the vertical displacement [ is now a function 
of the vertical co-ordinate. Also, e is to be replaced by a larger parameter e', 
which is of order (p/Ap) E ,  where p denotes the mean density and Ap the density 
difference between top and bottom of the ocean. Since (p/Ap) may be of order lo2, 
it  is possible, if a is sufficiently large, for E' to be of order unity. In that case it 
appears that the solutions of 3 1 may well be applicable. 
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3. Conclusions 
A circular island in a rotating ocean of uniform depth h and constant Coriolis 

parameter f can effectively trap energy in the form of progressive waves, but 
only iff is constant over a very wide area. The frequency of the trapped modes is 
always less than the inertial frequency, and the waves progress round the island 
in the same direction as inertial oscillations, that is to say clockwise in the 
northern hemisphere. 

If the azimuthal wave-number n = 1, trapping is always possible in theory. 
If on the other hand 2 2, trapping is possible only if the radius of the island 
exceeds (n(n - 1) gh)*/f. For barotropic motions (but not baroclinic motions) in 
the sea, this quantity is generally so large that trapping is impossible. 

The peak at  0.73 c.p.d. in the sea-level spectrum a t  Oahu probably represents 
the forced response of the island to currents at nearly the inertial frequency. 
This hypothesis also accounts for the observed phase difference between Mokuoloe 
and Honolulu, assuming that some of the energy is propagated round the 
Hawaiian ridge as a whole. It would be interesting to examine records of sea-level 
at other island stations for evidence of similar oscillations. 

I am indebted to Dr Gordon W. Groves for stimulating correspondence on this 
subject. The present research has been supported under N.S.F. Grant GA-1452. 

Appendix A. Inertial oscillations 

portional to eift. The linearized equations of motion become 
Suppose first that the frequency u is equal to - f, so that u, v and 5 are pro- 

1 if(v-iu) = - 9 - .  
aY 

(A 2) 

(A 3) 

* igac 9% (u+zv) =-- = 
f a x  fay’  

- -__ v y  = 0, ac 
ax a(iy)’ 

Hence we have 

and so 

which is the special form of (1.1) when u2 = f z .  This can be satisfied by taking 
5 to be an analytic function of z* = (x-iy), so that 

-. - 

(A 4) 
is ac 

( U f i V )  = -- 
f az*. 

The equation of continuity, when u = - f, becomes 

h (E -+- i;) =-if{. 

To see that this can also be satisfied, write 

(u - iv) = 2. 
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Then, from (A2) and (A6),  

of which the solution is Z = -- ’f j gd x* + ~ ( z )  ei f t ,  

where F is an arbitrary analytic function of x = (x t iy). 

h 

The radial velocity is given by 

i.e. 

u, = u cos I3 + v sin 13, 

2u, = (u - iv)  eie + (u + iv)  e-ie, 

This expression is to vanish on the boundary r = a. 
From (A4) the appropriate form for < bounded at  infinity is 

eif t g = - *  
x* ’ When n = 1, we have 

so from (A9) 

The condition that u, shall vanish at r = a now becomes 

This can only be satisfied by an expression of the form 

F(z)  = -logx+const. f 
ih 

Since logx -+ 00 as r + co, this does not represent a trapped motion. 
On the other hand, when n >, 2 we have 

781 

The condition that u, shall vanish at  r = a gives 



782 M .  X. Longuet-Higgins 

s o  

Now, if the coeEcient of eine does not vanish, then F ( z )  is proportional to # - I ) ,  

must have 
- - rn-l ei(n-l)e, which tends to infinity as r +. 00. So for a bounded solution we 

(A 22) 
(I--) E = 0, c = n(n-1). 

n(n- 1) 

I n  other words, the radius a must be exactly equal to the critical radius 
(n(n - 1 )  gh)h/f. It would be interesting to verify this conclusion experimentally. 

Appendix B. The sign of d2F/dg2 

Let us define 
z dK y = --- = nFn, 
K dz  

where for brevity we have written Kn = K .  Thus K is the solution of Bessel’s 
modified equation: 

which tends to zero as z -+ 00. From the asymptotic formulae (1.6) it follows that 
asz+oo, 

dK 
K > 0, ( z Z )  > 0. 

From (B 2 )  it then follows that K > 0 and ( z d K / d z )  < 0 for all positive z. Hence 
y > 0 over the range of interest. What we have now to show is that, for all 
positive z,  

where x: = z2 = Zfl (see 3 1) .  
Now, from the definition of y (equation (B l)), it follows that 

and, on substituting from the differential equation (€3 Z ) ,  we obtain simply 

a first-order, non-linear equation for y .  Since dldz = 2zd/dx, we have then 

(B 7) 
dy- y2-n2-x  
ax 22 

- 

Differentiating again, this time with respect to x, we obtain 

d2y ydy  y2-n2 
ax2 - xdx  2x2 
- - 
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and, on substitution from (B 7), 

1 
d2y - - [ (y -  l ) (y2-n2-x) -x] .  
d z 2  - 2x2 

Therefore it is sufficient to show that 

P < 0, 

where P = ( y -  1 )  ( y2 -n2-x ) - x .  

To do this we differentiate (B 11) once more: 

-=  - - (y2-n2--x)+(y- l )  d P  dy 
dx dx 

= 2x - +-P. (2)' : 
So for P we have the first-order differential equation 

where 

x d P  yz- P = Q,  

2x2 dy 2 
&=-(-) Y dx 2 0 ,  
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since y > 0,  as shown earlier. Now since y is always positive we may define a new 
independent variable x by the equation 

so that (B 13) becomes simply 

( $ - l ) P = Q .  

The solution of this equation is 

Pe-x = - Jxm Q e-x d x  + const. (B 17) 

But, as x + 00, we have from the asymptotic formulae for K,(z) 

Y N x4, P N - 4x4, x N 2x4. (B 18)  

Hence, on taking the limit as x --f 00 in equation (B 17), we see that the constant 
of integration must vanish. Therefore we have 

P = - ex jxm Q e-x dx .  (B 19) 

Since Q is non-negative, it follows that P must be strictly negative. This proves 
the result. 
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